

NEUE MASSSTÄBE FÜR WERKZEUGSTANDZEITEN

BESCHICHTETE HARTMETALLSORTE FÜR FRÄSARBEITEN

FORTSCHRITTLICHER VERSCHLEISSWIDERSTAND

Durch die neu entwickelte Beschichtungstechnologie mit hohem Al-Anteil, verfügt (Al,Ti)N mit ebenfalls hohem Al-Anteil über eine sehr hohe Härte. Dies verbessert deutlich die Oxidation und den Verschleißwiderstand.

FORTSCHRITTLICHER THERMOSCHOCKWIDERSTAND

Der starke Hitzewiderstand dieser neuen Serie ermöglicht eine großartige Stabilität während der Trocken- aber auch der Nassbearbeitung, bei der WSP üblicherweise thermischem Verschleiß ausgesetzt sind.

••• HOHER WIDERSTAND GEGEN AUFBAUSCHNEIDENBILDUNG

Glatte Oberfläche.

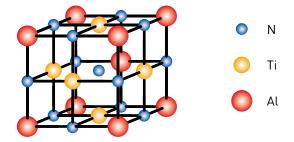
HERAUSRAGENDE VERSCHLEISSFESTIGKEIT.

Neu entwickelte Al-Rich coating.

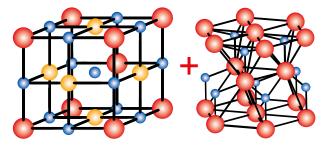
HERVORRAGENDE WIDERSTANDSFÄHIGKEIT GEGEN ABSPLITTERUNG FÜR STABILE BEARBEITUNG

Neu entwickelter Binder.

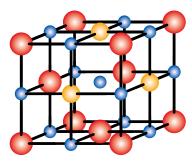
BRUCHFESTIGKEIT FÜR ULTIMATIVE STABILITÄT


Einzigartiges Hartmetallsubstrat.

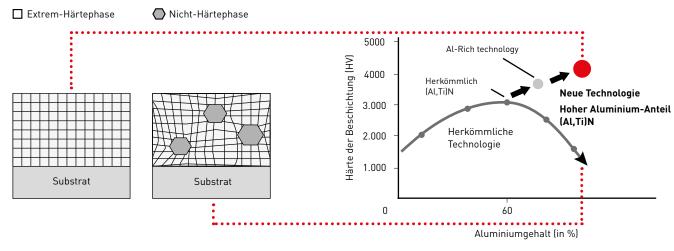
BESCHICHTUNGSTECHNOLOGIE, DIE JETZIGE MASSSTÄBE FÜR WERKZEUGSTANDZEITEN NEU DEFINIERT


AUFGRUND DER NEU ENTWICKELTEN AL-RICH BESCHICHTUNGSTECHNOLOGIE.

Aluminiumtitanitrid (Al,Ti)N ist eine Verbindung aus Aluminium und Titan, die aufgrund ihrer äußerst harten und hitzebeständigen Eigenschaften weit verbreitet als Beschichtung für Zerspanungswerkzeuge verwendet wird.


Die Kombination von Atomen unterschiedlicher Größen erzeugt eine außergewöhnlich harte Kristallstruktur.

Die Härte von (Al,Ti)N steigt mit zunehmendem Al-Gehalt, aber bei herkömmlicher Technologie ändert sich die Kristallstruktur und die Härte von (Al,Ti)N nimmt ab, wenn das Al-Verhältnis 60 % überschreitet.

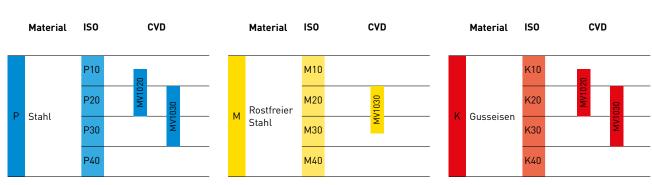


Wenn das Al-Verhältnis bei über 60 % liegt, bildet sich eine weichere Kristallstruktur.

Neue Beschichtungstechnologie, basierend auf originaler Technologie von Mitsubishi Materials. Auf diesem Wege wird die kristalline Struktur der Al-Beschichtung nicht verändert, selbst wenn der Al-Anteil erhöht ist. Dies ermöglicht einen höheren Al-Anteil und eine größere Stärke von (Al,Ti)N.

Kristallbild der Serie MV1000

MV1020/MV1030


BESCHICHTETE HARTMETALLSORTE FÜR FRÄSARBEITEN

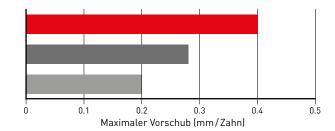
MV1020

Diese Hartmetallsorte verfügt über einen fortschrittlichen Verschleiß- und Thermoschockwiderstand, ermöglicht insbesondere bei Stahl und duktilem Gusseisen eine stabile Bearbeitung bei beispiellosen Geschwindigkeiten und reduziert so merklich die Arbeitszeit.

MV1030

Die neue Beschichtungstechnologie mit hohem Al-Anteil ermöglicht zudem exzellenten Verschleißwiderstand. Außerdem wurde eine außerordentliche Leistung bei plötzlichen Brüchen während problematischen Nassbearbeitungen und Bearbeitungen von rostfreiem Stahl realisiert.

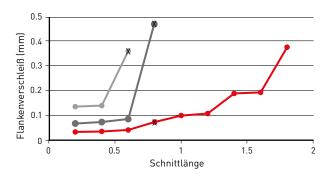
1. Für rostfreien Stahl wird die Trockenbearbeitung mit MV1030 empfohlen.


SCHNITTLEISTUNG

MV1030

VERGLEICH DER BRUCHFESTIGKEIT BEI UNTERBROCHENER BEARBEITUNG VON LEGIERTEM STAHL

MV1030 ist aufgrund einer exzellenten Bruchfestigkeit auch bei unterbrochener Bearbeitung mit hohem Vorschub geeignet.


Material	DIN 41CrMo4 (1.7223)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	200
ap (mm)	3.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung

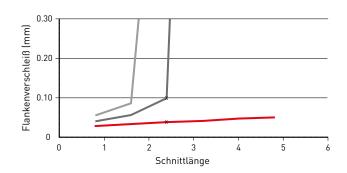
VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON ROSTFREIEM STAHL

MV1030 verhindert Schäden an der Schneidkante und kann die Werkzeugstandzeit signifikant verbessern.

Material	DIN X5CrNi189 (1.4350)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	180
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung Einzel-WSP

NACH DER BEARBEITUNG: 0.8 M

NACH DER BEARBEITUNG: 0.6 M


Herkömmlich B

SCHNITTLEISTUNG

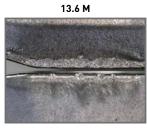
MV1020

VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON LEGIERTEM STAHL

Material	DIN 41CrMo4 (1.7223)
Werkzeug	WWX400
WSP	6NMU1409080PNER-M
Vc (m/min)	300
fz (mm/Zahn)	0.15
ap (mm)	3.0
ae (mm)	52
Schnittmodus	Trockenbearbeitung Einzel-WSP

AUFNAHME NACH EINER SCHNITTLÄNGE VON 2.4 M

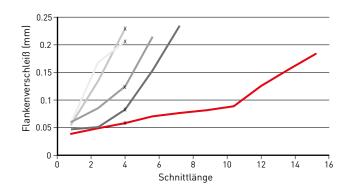



MV1020 Herkömmlich A

VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON DUKTILEM GUSSEISEN

Material	DIN GGG70 (0.7070)			
Verkzeug WJX14				
WSP	JOMU140715ZZER-M			
Vc (m/min)	220			
fz (mm/Zahn)	1.0			
ap (mm)	1.0			
ae (mm)	45			
Schnittmodus	Trockenbearbeitung Einzel-WSP			

Herkömmlich A Herköm


Herkömmlich C

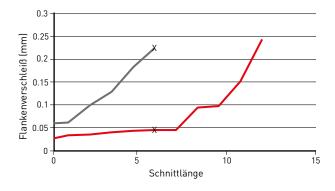
SCHNITTLEISTUNG

MV1020

VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON DUKTILEM GUSSEISEN

DIN GGG70 (0.7070)
ווע טטטיט (ט.יטיט)
AHX440
NNMU130508ZEN-M
300
0.1
2.0
52
Trockenbearbeitung Einzel-WSP

AUFNAHME NACH EINER SCHNITTLÄNGE VON 4.0 M


MV1020

Herkömmlich C

Herkömmlich D

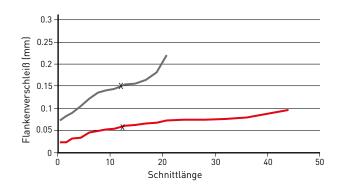
VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON LEGIERTEM STAHL

Material	DIN 41CrMo4 (1.7223)
Werkzeug	WSX445
WSP	SNMU140812ANER-M
Vc (m/min)	300
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 6.0 M

SCHNITTLÄNGE VON 12 M ERREICHT

MV1020


Herkömmlich A

SCHNITTLEISTUNG

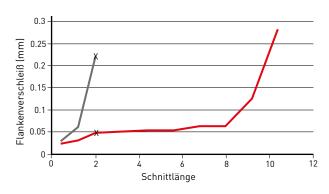
MV1020

VERGLEICH DES VERSCHLEISSWIDERSTANDS VON WALZSTAHL

Material	DIN St44.2 (1.0144)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	300
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 12.8 M

SCHNITTLÄNGE VON 40 M ERREICHT



MV1020

Herkömmlich

VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON C-STAHL

Material	DIN Ck55 (1.1203)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	200
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Nassbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 2.0 M

SCHNITTLÄNGE VON 10 M ERREICHT

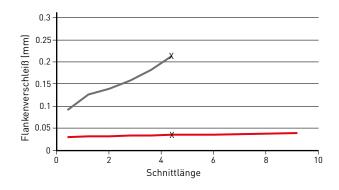
MV1020

Spanfläche

Hauptschneidkante

Wiper

ABSPLITTERUNGEN NACH EINER SCHNITTLÄNGE VON


Herkömmlich

SCHNITTLEISTUNG

MV1020

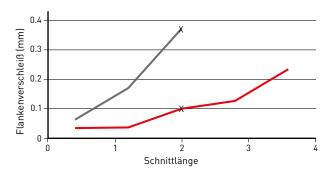
VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON DUKTILEM GUSSEISEN

Material	DIN GGG45 (0.7045)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	250
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 4.4 M

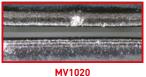
ERREICHT EINE SCHNITTLÄNGE VON 9 M ODER MEHR

BEARBEITUNG NACH EINER SCHNITTLÄNGE VON 4.4 M NICHT MÖGLICH



MV1020

Herkömmlich


VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON DUKTILEM GUSSEISEN NASSBEARBEITUNG

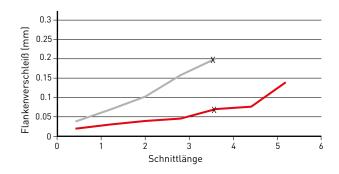
Material	DIN GGG70 (0.7070)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	200
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Nassbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 2.0 M

SCHNITTLÄNGE VON 3.5 M ERREICHT

BEARBEITUNG NACH EINER SCHNITTLÄNGE VON 2.0 M NICHT MÖGLICH

Herkömmlich


SCHNITTLEISTUNG

MV1020

VERGLEICH DES VERSCHLEISSWIDERSTANDS BEI DER BEARBEITUNG VON DUKTILEM GUSSEISEN

TROCKENBEARBEITUNG

Material	DIN GGG70 (0.7070)
Werkzeug	ASX445
WSP	SEMT13T3AGSN-JM
Vc (m/min)	200
fz (mm/Zahn)	0.2
ap (mm)	2.0
ae (mm)	100
Schnittmodus	Trockenbearbeitung

AUFNAHME NACH EINER SCHNITTLÄNGE VON 3.6 M

SCHNITTLÄNGE VON 5.0 M ERREICHT

ABSPLITTERUNGEN
AUFGRUND VON
BESCHICHTUNGSABRIEB

MV1020

Herkömmlich

WSP

	Stahl				•	•			,			5	nehrerer Faktoren unte npfohlene Schnittdater
	Rostfreier Stahl					•	Verfasur		ı. Fui w	eitere ii	iiormat	ionen, siene ei	ripioniene Schnittaater
1	Gusseisen				•	•	E: Rund	-5-					
ı	Bestellnummer	Anwendungsbereich	Klasse	Verfasung	MV1020	MV1030	IC	s	S 1	BS	RE/ BCH		Geometrie
	6NMU0906040PNER-M	Allgemeine Zerspanung	М	Е	•		9.0	5.3	6.1	1.6	0.4	WWX200	EDCD 000
	6NMU0906080PNER-M	Allgemeine Zerspanung	М	Е	•		9.0	5.3	6.1	1.2	0.8	•	EPSR 90°
	6NMU0906080PNER-R	Schneidkantenstärke	М	Е	•		9.0	5.3	6.1	1.2	0.8		
													RE IC S
	6NGU1409040PNER-L	Geringer Schnittwiderstand	G	Е	•	•	14.0	7.0	9.0	1.7	0.4	WWX400	
	6NGU1409080PNER-L	Geringer Schnittwiderstand	G	Е	•	•	14.0	7.0	9.0	1.3	0.8		
	6NGU1409040PNER-M	Allgemeine Zerspanung	G	Е	•	•	14.0	7.0	9.0	1.7	0.4		
-	6NGU1409080PNER-M	Allgemeine Zerspanung	G	Е	•	•	14.0	7.0	9.0	1.3	0.8		EPSR 90°
Į	6NMU1409040PNER-M	Allgemeine Zerspanung	М	Е	•	•	14.0	7.0	9.0	1.7	0.4		
	6NMU1409080PNER-M	Allgemeine Zerspanung	М	Е	•	•	14.0	7.0	9.0	1.3	0.8		
	6NMU1409160PNER-M	Allgemeine Zerspanung	М	Е	•	•	14.0	7.0	9.0	0.5	1.6		RE
	6NMU1409200PNER-M	Allgemeine Zerspanung	М	Е	•	•	14.0	7.0	9.0	0.5	2.0		
Į	6NMU1409080PNER-R	Schneidkantenstärke	М	Е	•	•	14.0	7.0	9.0	1.3	0.8		
-	6NMU1409160PNER-R	Schneidkantenstärke	М	Е	•	•	14.0	7.0	9.0	0.5	1.6		
Ī	6NMU1409200PNER-R	Schneidkantenstärke	М	Е	•	•	14.0	7.0	9.0	0.5	2.0		
	SNGU140812ANER-L	Geringer Schnittwiderstand	G	Е	•	•	14.0	8.4	_	1.5	1.2	WSX445	
•	SNGU140812ANER-M	Allgemeine Zerspanung	G	Е	•	•	14.0	8.4	_	1.5	1.2		RE
	SNMU140812ANER-M	Allgemeine Zerspanung	М	Е	•	•	14.0	8.4	_	1.5	1.2		
Ī	SNMU140812ANER-R	Schneidkantenstärke	М	Ε	•	•	14.0	8.4	_	1.5	1.2	The same of the sa	
	SNMU140812ANER-H	Schneidkantenstärke	М	Ε	•	•	14.0	8.4	_	1.5	1.2		85^
_	JOMU090512ZZER-L	Geringer Schnittwiderstand		E	•	•	9.525	4.73		0.88	1.2	WJX	
-	JOMU140715ZZER-L	Geringer Schnittwiderstand	М	E	•	•	14.0	6.58		1.3	1.5		
-	JOMU090512ZZER-M	Allgemeine Zerspanung	M	E	•	•	9.525			0.88	1.2		
_	JOMU140715ZZER-M	Allgemeine Zerspanung	М	E	•	•	14.0	6.63	_	1.3	1.5		RE RS
-	JOMU090512ZZER-R	Schneidkantenstärke	M	E	•	•	9.525			0.88	1.2	1	
_	JOMU140715ZZER-R	Schneidkantenstärke	М	E	•	•	14.0	6.75	_	1.3	1.5		
_	SNMU1206C05ZNER-M	Fräsen von Gusseisen	М	E	•	•	12.7	6.2		1.6	0.5	WSF406W	

1/3

(10 WSP pro VPE)

● : Lagerstandard. ★ : Lagerstandard in Japan.

WSP

Р	Stahl				•	•						-	mehrerer Faktoren unter-
М	Rostfreier Stahl					*			n. Für w	eitere Ir	nformat	ionen, siehe e	mpfohlene Schnittdaten.
Κ	Gusseisen				•	•	Verfası E: Runc	-					
	Bestellnummer	Anwendungsbereich	Klasse	Verfasung	MV1020	MV1030	L	S	LE	BS	RE		Geometrie
	LOGU0904020PNER-L		G	Ε	•	•	8.7	4.3	7.6	1.7	0.2	VPX200	
	LOGU0904040PNER-L	-	G	Е	•	•	8.7	4.3	7.6	1.5	0.4		
	LOGU0904080PNER-L	Geringer	G	Ε	•	•	8.7	4.3	7.6	1.2	0.8		
	LOGU0904100PNER-L	Schnittwiderstand	G	Е	•	•	8.7	4.3	7.6	1.0	1.0		
	LOGU0904120PNER-L		G	Ε	•	•	8.7	4.3	7.6	0.8	1.2		
	LOGU0904160PNER-L	-	G	Е	•	•	8.7	4.3	7.6	0.5	1.6		BS II RE
	LOGU0904020PNER-M		G	Е	•	•	8.7	4.3	7.6	1.7	0.2		
	LOGU0904040PNER-M	-	G	Е	•	•	8.7	4.3	7.6	1.6	0.4		<u>.s.</u>
	LOGU0904080PNER-M	. 7	G	Е	•	•	8.7	4.3	7.6	1.2	0.8	•	
	LOGU0904100PNER-M	- Allgemeine Zerspanung	G	Е	•	•	8.7	4.3	7.6	1.0	1.0		
	LOGU0904120PNER-M		G	Е	•	•	8.7	4.3	7.6	0.9	1.2		
	LOGU0904160PNER-M	-	G	Е	•	•	8.7	4.3	7.6	0.5	1.6		
	LOGU1207020PNER-L		G	Е	•	•	12.4	7.0	11.3	3.0	0.2	VPX300	
	LOGU1207040PNER-L	_	G	Е	•	•	12.4	7.0	11.3	2.8	0.4		
	LOGU1207080PNER-L		G	Е	•	•	12.4	7.0	11.3	2.6	0.8		
	LOGU1207100PNER-L	-	G	Е	•	•	12.4	7.0	11.3	2.5	1.0		
	LOGU1207120PNER-L	Geringer	G	Ε	•	•	12.4	7.0	11.3	2.4	1.2		
	LOGU1207160PNER-L	Schnittwiderstand	G	Е	•	•	12.4	7.0	11.3	1.8	1.6		
	LOGU1207200PNER-L		G	Ε	•	•	12.4	7.0	11.3	1.4	2.0		
	LOGU1207240PNER-L	<u>-</u>	G	Е	•	•	12.4	7.0	11.3	1.2	2.4		
	LOGU1207300PNER-L		G	Ε	•	•	12.4	7.0	11.3	0.6	3.0		BS TRE
	LOGU1207320PNER-L		G	Е	•	•	12.4	7.0	11.3	0.4	3.2	7	R2 H
	LOGU1207020PNER-M		G	Е	•	•	12.4	7.0	11.3	3.0	0.2		
	LOGU1207040PNER-M		G	Е	•	•	12.4	7.0	11.3	2.8	0.4		<u>[S]</u>
	LOGU1207080PNER-M		G	Е	•	•	12.4	7.0	11.3	2.4	0.8	•	
	LOGU1207100PNER-M	-	G	Е	•	•	12.4	7.0	11.3	2.3	1.0		
	LOGU1207120PNER-M	Allgamaina Zarananuna	G	Е	•	•	12.4	7.0	11.3	2.1	1.2		
	LOGU1207160PNER-M	- Allgemeine Zerspanung	G	Е	•	•	12.4	7.0	11.3	1.7	1.6		
	LOGU1207200PNER-M		G	Е	•	•	12.4	7.0	11.3	1.4	2.0		
	LOGU1207240PNER-M	-	G	Е	•	•	12.4	7.0	11.3	1.0	2.4		
	LOGU1207300PNER-M		G	Е	•	•	12.4	7.0	11.3	0.5	3.0		
	LOGU1207320PNER-M	-	G	Е	•	•	12.4	7.0	11.3	0.3	3.2		

(10 WSP pro VPE)

12

WSP

Р	Stahl				•	•			,			3	ehrerer Faktoren	
М	Rostfreier Stahl					•	scheideı Verfasu		. Für w	eitere li	ntorma	tionen, siehe em	pfohlene Schnitte	daten.
K	Gusseisen				•	•	E: Rund	-	se + Ru	ınd				
	Bestellnummer	Anwendungsbereich	Klasse	Verfasung	MV1020	MV1030	IC	S	S1	BS	RE		Geometrie	
	NNMU130508ZER-L	Geringer Schnittwiderstand	М	Е	•	•	13.4	5.77	_	1.0	0.8	AHX440/475		
	NNMU130508ZEN-M	Allgemeine Zerspanung	М	Е	•	•	13.4	5.57	_	1.0	0.8		4	
	NNMU130532ZEN-M	Allgemeine Zerspanung	М	Е	•	•	13.4	5.57	_	_	3.2			
	NNMU130532ZEN-R	Schneidkantenstärke	М	Е	•	•	13.4	5.47	_	_	3.2		BS RE) (
													IC IC	S
	SEET13T3AGEN-JL	Leichte Schlichtzerspanung	Е	Е	•	•	13.4	3.97	_	1.9	1.5	ASX445		
	SEMT13T3AGSN-JM	Leichte Schlichtzerspanung	М	S	•	•	13.4	3.97	_	1.9	1.5		RE BS	
	SEMT13T3AGSN-JH	Mittlere Schwerzerspanung	М	S	•	•	13.4	3.97	_	1.9	1.5		RE	
	SEMT13T3AGSN-FT	Fräsen von Gusseisen	М	S	•	•	13.4	3.97	_	1.9	1.5		45°	₩, _{∧N}
													IC .	<u>S</u> 20°
	SOET12T308PEER-JL	Leichte Schlichtzerspanung	Ε	Е	•	•	12.7	3.97	_	1.4	0.8	ASX400	,	
	SOMT12T308PEER-JM	Leichte Schlichtzerspanung	М	Е	•	•	12.7	3.97	_	1.4	0.8	-	, RE	
	SOMT12T308PEER-JH	Mittlere Schwerzerspanung	М	Е	•	•	12.7	3.97	_	1.4	0.8		35	
	SOMT12T320PEER-FT	Unterbrochene Schwerzerspanung	М	Е	•	•	12.7	3.97	_	0.5	2.0			Ų.
													IC	S

3/3

(10 WSP pro VPE)

BESCHICHTETE HARTMETALLSORTE FÜR FRÄSARBEITEN

GROSSE AUSWAHL VON SCHNITTGESCHWINDIGKEITEN (TROCKENBEARBEITUNG MIT WWX400)

Material	Eigenschaften	Sorte	Vc			
		MV1020	305 (250 – 360)			
Baustahl	=====================================	MV1030	235 (190 – 280)			
Daustant	€180HB —	MP6120	245 (200 – 290)			
		MP6130	235 (190 – 280)			
		MV1020	260 (210 – 310)			
	180-280HB —	MV1030	200 (155 – 245)			
	100-200115	MP6120	205 (160 – 250)			
C-Stahl		MP6130	200 (155 – 245)			
Legierter Stahl		MV1020	260 (210 – 310)			
	200 250110	MV1030				
	280-350HB —	MP6120	200 (155 – 245)			
		MP6130	195 (150 – 240)			
		MV1030	180 (155 – 200)			
Rostfreier Stahl	>200HB	MP7130	175 (150 – 200)			
		VP15TF	175 (150 – 200)			
		MV1020	255 (200 – 310)			
	Zugfestigkeit	MV1030	205 (160 – 250)			
	<450MPa	MP6120	205 (160 – 250)			
Duktiles Gusseisen		MP6130	205 (160 – 250)			
DUKITES GUSSEISEII		MV1020	225 (160 – 290)			
	Zugfestigkeit	MV1030	170 (130 – 210)			
	>450MPa	MP6120	170 (130 – 210)			
		MP6130	170 (130 – 210)			

SCHNITTDATENEMPFEHLUNGEN

WWX200/400

SCHNITTGESCHWINDIGKEIT (TROCKENBEARBEITUNG)

DC (Nut)	≽0.5 DC	ae	
DC (Nut)	≽0.5 DC		
		≥0.8 DC	DC (Nut)
		Vc	
50 (200–300)	230 (190–270)	210 (170–250)	190 (150–230)
0 (190–290)	230 (190–270)	210 (170–250)	190 (150–230)
0 (160–260)	200 (160–240)	180 (140–220)	160 (120–200)
00 (150–250)	200 (160–240)	180 (140–220)	160 (120–200)
_	180 (160–200)	160 (140–180)	_
_	170 (150–190)	150 (130–170)	_
00 (150–260)	210 (170–250)	190 (150–230)	170 (130–210)
0 (140–250)	210 (170–250)	190 (150–230)	170 (130–210)
0 (120–210)	170 (130–210)	150 (110–190)	130 (90–170)
	170 (130–210)	150 (110–190)	130 (90–170)
0	(120–210)	[120-210] 170 [130-210]	(140-250) 210 (170-250) 190 (150-230) (120-210) 170 (130-210) 150 (110-190) (110-200) 170 (130-210) 150 (110-190)

WWX200/400

SCHNITTGESCHWINDIGKEIT (NASSBEARBEITUNG)

		en		MV1020			MV1030	
Matarial	Financehoften			ae			ae	
Material	Eigenschaften	Schnitt- bedingur	≽0.5 DC	≽0.8 DC	DC (Nut)	≽0.5 DC	≽0.8 DC	DC (Nut)
	_	Sch		Vc		Vc		
Dawatahi	≤180HB	•	220 (210–230)	190 (180–210)	180 (160–190)	140 (130–150)	120 (110–130)	110 (100–120)
Baustahl	*100HD	C	210 (200–220)	180 (170–200)	170 (150–180)	140 (130–150)	120 (110–130)	110 (100–120)
C-Stahl	100 050110	•	200 (190–210)	170 (160–190)	160 (150–170)	140 (130–150)	120 (110–130)	110 (100–120)
Legierter Stahl	180-350HB	C	190 (180–200)	160 (150–180)	150 (140–160)	140 (130–150)	120 (110–130)	110 (100–120)
	Zugfestigkeit	•	200 (180-240)	180 (150–220)	150 (130–200)	160 (140–180)	140 (120–160)	120 (100–140)
Dulatilas Cossaisas	≼450MPa	•	190 (170–230)	170 (140–210)	140 (120–190)	160 (140–180)	140 (120–160)	120 (100–140)
Duktiles Gusseisen	Zugfestigkeit	•	180 (170–210)	160 (150–190)	140 (120–160)	150 (140–160)	130 (120–140)	110 (100–120)
	<800MPa	•	170 (160–200)	150 (140–180)	120 (110–150)	150 (140–160)	130 (120–140)	110 (100–120)
								1/1

^{1.} Die empfohlene Schnittgeschwindigkeit wurde für eine Schnitttiefe von 2 mm berechnet. Bei Vergrößerung der Schnitttiefe ist die Schnittgeschwindigkeit um einen entsprechenden Faktor zu verringern.

SCHNITTDATENEMPFEHLUNGEN

WWX200

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKEN-/NASSBEARBEITUNG

			gen			ae						
	Material	Eigenschaften	۳. emg	≥0.5 DC				≥	0.8 DC	DC (Nut)		
	Material		Schnitt- bedingung	~	ар	fz	~	ар	fz	~	ар	fz
	Baustahl	≤180HB	• €	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)
D	Daustant	₹100HD	C	M,R	≤3.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_
٢	C-Stahl	180-350HB	• €	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)
	Legierter Stahl	160-330HB	C	M,R	≤3.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_
		Zugfestigkeit	• C	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)
v	Duktiles Gusseisen	<450MPa	•	M,R	≤3.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_
n	Duktiles Gusselsen	Zugfestigkeit	• €	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)
		<800MPa	C	M,R	≤3.0	0.16 (0.10-0.20)	M,R	≼3.0	0.16 (0.10-0.20)	_	_	_
												1/1

1. Schnittdaten anhand der obigen Tabelle passend zur Anwendung einstellen.

WWX400

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKEN-/NASSBEARBEITUNG

		en	ae										
Material	Eigenschaften	۲۰ Jung		≱	0.5 DC		ا≼	0.8 DC	DC (Nut)				
Material		Schnitt- bedingungen	~	ар	fz	Y	ар	fz	~	ар	fz		
Baustahl	≤180HB	• €	L, M	<4.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)		
Daustant	€10UПD	C	M,R	≤4.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_		
C-Stahl	180-350HB	• •	L, M	<4.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)		
Legierter Stahl	100-33000	C	M,R	<4.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_		
M Rostfreier Stahl	_	0 C	L,M	≤2.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)	_	_	_		
	Zugfestigkeit	• €	L, M	≤4.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)		
M. Duktilaa Cuaasiaan	≤450MPa	•	M,R	<4.0	0.16 (0.10-0.20)	M,R	≤3.0	0.16 (0.10-0.20)	_	_	_		
Duktiles Gusseisen ————Zugfestig	Zugfestigkeit	• €	L, M	<4.0	0.13 (0.10-0.15)	L, M	≤3.0	0.13 (0.10-0.15)	L, M	≤2.0	0.13 (0.10-0.15)		
	<800MPa	C	M,R	<4.0	0.16 (0.10-0.20)	M,R	≼3.0	0.16 (0.10-0.20)	_	_	_		
											1/1		

1. Schnittdaten anhand der obigen Tabelle passend zur Anwendung einstellen.

SCHNITTDATENEMPFEHLUNGEN

WSX445

SCHNITTGESCHWINDIGKEIT

TROCKEN-/NASSBEARBEITUNG

		MV1	020	MV1030			
Material	Eigenschaften		с	Vc			
		Trockenbearbeitung	Nassbearbeitung	Trockenbearbeitung	Nassbearbeitung		
Baustahl	≤180HB	300 (200 – 400)	220 (120 – 320)	250 (200 – 300)	150 (100 – 200)		
P C-Stahl	180-350HB	260 (170 – 350)	200 (100 – 300)	220 (170 – 270)	120 (80 – 160)		
Legierter Stahl	280-350HB	180 (100 – 250)	150 (100 – 200)	180 (100 – 250)	120 (80 – 160)		
M Rostfreier Stahl	_	_	_	200 (150 – 250)	_		
Dulatiles Consider	Zugfestigkeit ≤450MPa	240 (130 – 350)	200 (130 – 250)	160 (110 – 240)	150 (100 – 200)		
Duktites Gusselsen	Zugfestigkeit ≤800MPa	220 (80 – 350)	180 (80 – 230)	180 (110 – 250)	140 (80 – 200)		
K Duktiles Gusseisen							

WSX445

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKEN-/NASSBEARBEITUNG

							M		R)
	Material	Eigenschaften		1		1	~	1	~	1	~	
			L		L, M	1	М		M, R		R, H	I
			fz	ар	fz	ар	fz	ар	fz	ар	fz	ар
	Baustahl	≤180HB	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≤3.0	0.2 (0.15–0.25)	<4.0	0.25 (0.2–0.3)	≤5.0
Р	C-Stahl	180-350HB	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≤3.0	0.2 (0.15–0.25)	<4.0	0.25 (0.2–0.3)	≤5.0
	Legierter Stahl	280-350HB	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≼3.0	0.2 (0.15–0.25)	≤4.0	0.25 (0.2–0.3)	≤5.0
М	Rostfreier Stahl	_	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≤3.0	_	_	_	_
L/	Duktiles Cussiaes	Zugfestigkeit <450MPa	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≤3.0	0.2 (0.15–0.25)	<4.0	0.25 (0.2–0.3)	≤5.0
ĸ	Duktiles Gusseisen	Zugfestigkeit <800MPa	0.15 (0.1–0.2)	≤1.0	0.15 (0.1–0.2)	≤2.0	0.2 (0.15–0.25)	≼3.0	0.2 (0.15–0.25)	≤4.0	0.25 (0.2–0.3)	≤5.0
												1/

17

SCHNITTDATENEMPFEHLUNGEN

AUSWAHLTABELLE FÜR SPANBRECHER

WJX09

			~		~		~	
	Material	Eigenschaften	L		М		R	
			Schnittbedingungen	ар	Schnittbedingungen	ар	Schnittbedingungen	ар
В	Baustahl	≤180HB	• c	≤1.0	• •	≤1.5	C #	≤1.5
Ρ.	C-Stahl, Legierter Stahl	180-350HB	• €	≤1.0	• •	≤1.5	C #	≤1.5
М	Rostfreier Stahl	_	• c	≤1.0	• c	≤1.0	_	_
L/	Duktiles Gusseisen	Zugfestigkeit ≤450MPa	• €	≤1.0	• c	≤1.5	C #	≤1.5
r	Duktiles Gusseisen	Zugfestigkeit ≤800MPa	• €	≤1.0	• •	≤1.0	c #	≤1.0
								1/1

WJX14

			~		~		~	
	Material	Eigenschaften	L		М		R	
			Schnittbedingungen	ар	Schnittbedingungen	ар	Schnittbedingungen	ар
_	Baustahl	≤180HB	• •	≤2.0	• •	≤3.0	C #	≤3.0
Р	C-Stahl, Legierter Stahl	180-350HB	• •	≤2.0	• •	≤3.0	C #	≤3.0
М	Rostfreier Stahl	_	• c	≤2.0	• c	≤1.5	_	_
1/	Duktiles Gusseisen	Zugfestigkeit ≤450MPa	• ¢	≤2.0	• •	≤3.0	_	_
ĸ	Duktiles Gusselsen	Zugfestigkeit ≤800MPa	• c	≤2.0	• c	≤2.0	_	_
								1/1

SCHNITTDATENEMPFEHLUNGEN

WJX09

SCHNITTGESCHWINDIGKEIT (TROCKENBEARBEITUNG)

	E. 1.6	MV1020	MV1030
Material	Eigenschaften	Vc	Vc
Baustahl	≤180HB	230 (180 – 280)	160 (100 – 220)
C-Stahl, Legierter Stahl	180-350HB	220 (170 – 270)	150 (80 – 220)
1 Rostfreier Stahl	<200HB	_	160 (130 – 200)
Rostfreier Stahl	>200HB	_	140 (80 – 200)
Duktiles Gusseisen	Zugfestigkeit ≤450MPa	210 (160 – 260)	160 (120 – 210)
Duktites Gusselsen	Zugfestigkeit ≤800MPa	190 (140 – 240)	130 (90 – 170)

WJX09

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKENBEARBEITUNG

Material	Financolofton			DCX = 25, 28 (Z=2)	DCX = 25, 28 (Z=3)	DCX ≥ 32
Material	Eigenschaften		ар	fz	fz	fz
			≤0.5	1.3 (0.4 – 2.0)	1.3 (0.4 – 2.0)	1.5 (0.5 – 2.0)
		M, R	≤1.0	1.0 (0.3 – 1.3)	0.8 (0.3 – 1.0)	1.2 (0.4 – 1.5)
Baustahl	≤180HB		≤1.5	0.6 (0.3 – 1.0)	_	0.8 (0.4 – 1.2)
			<0.5	1.2 (0.4 – 1.6)	1.2 (0.4 – 1.6)	1.2 (0.4 – 1.6)
		L	≤1.0	0.8 (0.3 – 1.2)	0.8 (0.3 – 1.0)	1.0 (0.4 – 2.5)
			≤0.5	1.3 (0.4 – 1.7)	1.3 (0.4 – 1.7)	1.5 (0.4 – 2.0)
		M, R	≤1.0	0.8 (0.3 – 1.0)	0.7 (0.3 – 0.9)	1.0 (0.3 – 1.3)
C-Stahl Legierter Stahl	180-350HB		≤1.5	0.5 (0.3 – 0.7)	_	0.7 (0.3 – 1.0)
Legierter Stant			≤0.5	1.2 (0.3 – 1.5)	1.2 (0.3 – 1.5)	1.2 (0.3 – 1.5)
		L	≤1.0	0.7 (0.2 – 1.0)	0.7 (0.2 – 0.9)	0.7 (0.2 – 1.0)
			≤0.5	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)
D 16 : C1 11		L	≤1.0	1.0 (0.4 – 1.2)	1.0 (0.4 – 1.2)	1.0 (0.4 – 1.2)
Rostfreier Stahl	_		≤0.5	0.6 (0.2 – 0.8)	0.6 (0.2 – 0.8)	0.6 (0.2 – 0.8)
		М	≤1.0	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)
			≤0.5	1.3 (0.4 – 1.7)	1.3 (0.4 – 1.7)	1.5 (0.4 – 2.0)
		M, R	≤1.0	0.8 (0.3 – 1.0)	0.7 (0.3 – 0.9)	1.0 (0.3 – 1.3)
	Zugfestigkeit ≼450MPa		≤1.5	0.5 (0.3 – 0.7)	_	0.7 (0.3 – 1.0)
	*4JUMFd		≤0.5	1.0 (0.3 – 1.3)	1.0 (0.3 – 1.3)	1.0 (0.3 – 1.3)
Duktiles Gusseisen		L	≤1.0	0.8 (0.2 – 1.0)	0.7 (0.2 – 0.9)	0.8 (0.2 – 1.2)
			<0.5	1.0 (0.2 – 1.5)	1.0 (0.2 – 1.5)	1.3 (0.3 – 1.7)
	Zugfestigkeit	M, R	≤1.0	0.8 (0.2 – 1.0)	0.6 (0.2 – 0.8)	1.0 (0.3 – 1.2)
	<800MPa		<0.5	0.8 (0.3 – 1.2)	0.8 (0.3 – 1.2)	0.8 (0.3 – 1.2)
		L	≤1.0	0.5 (0.2 – 0.8)	0.5 (0.2 – 0.8)	0.5 (0.2 – 0.8)

 Verwenden Sie während der Zerspanung Druckluft, um Späne effektiv auszutragen. Können die Späne nicht effektiv mit Druckluft ausgetragen werden, empfehlen wir die Nassbearbeitung.

Die Werkzeugstandzeit kann bei Nassbearbeitung kürzer sein als bei Trockenbearbeitung. Wenn Sie für Anwendungen, bei denen Trockenbearbeitung empfohlen wird, Nassbearbeitung anwenden, reduzieren Sie die Schnittgeschwindigkeit um 25 %.

^{3.} Reduzieren Sie die Schnittdaten, wenn starke Vibrationen auftreten.

 $^{4. \ \} Reduzieren \ Sie bei unterbrochenen Schnitten \ die Schnittgeschwindigkeit \ und \ die \ Vorschubgeschwindigkeit \ um \ 20 \ \%.$

SCHNITTDATENEMPFEHLUNGEN

WJX14

SCHNITTGESCHWINDIGKEIT (TROCKENBEARBEITUNG)

Matarial	E'arasaha (tan	MV1020	MV1030
Material	Eigenschaften	Vc	Vc
Baustahl	≤180HB	220 (170 – 270)	130 (80 – 180)
C-Stahl, Legierter Stahl	180-350HB	200 (150 – 250)	120 (60 – 180)
1 Rostfreier Stahl	≤200HB	-	160 (130 – 200)
Rostfreier Stahl	>200HB	-	140 (100 – 200)
Duktiles Gusseisen	Zugfestigkeit ≤450MPa	200 (150 – 250)	150 (100 – 200)
Duktiles Gusselsen	Zugfestigkeit ≤800MPa	180 (130 – 230)	120 (80 – 160)
			1

SCHNITTDATENEMPFEHLUNGEN

WJX09

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKENBEARBEITUNG

Matarial	E'manada (tan			DCX = 50, 52	DCX ≥ 63
Material	Eigenschaften		ap —	fz	fz
			≤1.0	1.5 (0.6 – 2.5)	1.7 (0.6 – 2.8)
			≤1.5	1.3 (0.6 – 2.0)	1.5 (0.6 – 2.5)
		M, R	≤2.0	1.2 (0.6 – 2.0)	1.3 (0.6 – 2.5)
Daystahl	4100LID		≤2.5	0.8 (0.3 – 1.5)	1.0 (0.3 – 1.6)
Baustahl	≤180HB		≼3.0	0.4 (0.2 – 1.0)	0.5 (0.2 – 1.2)
			≤1.0	1.2 (0.4 – 2.0)	1.2 (0.4 – 2.0)
		L	≤1.5	1.0 (0.4 – 1.8)	1.0 (0.4 – 2.5)
			≤2.0	0.8 (0.4 – 1.7)	0.8 (0.4 – 1.7)
			≤1.0	1.5 (0.5 – 2.0)	1.7 (0.5 – 2.5)
			≤1.5	1.2 (0.5 – 1.7)	1.3 (0.5 – 2.2)
		M, R	≤2.0	1.0 (0.5 – 1.5)	1.2 (0.5 – 2.0)
C-Stahl	400 050110		≤2.5	0.7 (0.3 – 1.2)	0.9 (0.3 – 1.5)
Legierter Stahl	180-350HB		≼3.0	0.3 (0.2 – 0.8)	0.4 (0.2 – 1.0)
			≤1.0	1.0 (0.3 – 1.7)	1.0 (0.3 – 1.7)
		L	≤1.5	0.8 (0.3 – 1.5)	0.8 (0.3 – 1.5)
			≤2.0	0.7 (0.3 – 1.2)	0.7 (0.3 – 1.2)
			≤1.0	1.0 (0.5 – 1.2)	1.0 (0.5 – 1.2)
	000115	М	≤1.5	1.0 (0.5 – 1.0)	1.0 (0.5 – 1.0)
	≤200HB		≤1.0	0.8 (0.3 – 1.2)	0.8 (0.3 – 1.2)
D 1(; C) 11		L	≤1.5	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)
Rostfreier Stahl			≤1.0	1.0 (0.5 – 1.2)	1.0 (0.5 – 1.2)
	000115	М	≤1.5	1.0 (0.5 – 1.0)	1.0 (0.5 – 1.0)
	>200HB		≤1.0	0.8 (0.3 – 1.2)	0.8 (0.3 – 1.2)
		L	≤1.5	0.8 (0.3 – 1.0)	0.8 (0.3 – 1.0)
			≤1.0	1.5 (0.5 – 2.0)	1.7 (0.5 – 2.5)
			≤1.5	1.3 (0.5 – 1.8)	1.5 (0.5 – 2.0)
		MR	≤2.0	1.2 (0.5 – 1.8)	1.3 (0.5 – 2.0)
	Zugfestigkeit		≤2.5	0.7 (0.3 – 1.2)	0.9 (0.3 – 1.5)
	≤450MPa		≼3.0	0.3 (0.2 – 0.8)	0.4 (0.2 – 1.0)
			≤1.0	1.2 (0.3 – 2.0)	1.2 (0.3 – 2.0)
		L	≤1.5	1.0 (0.3 – 1.7)	1.0 (0.3 – 1.7)
Duktiles Gusseisen			≤2.0	0.8 (0.3 – 1.5)	0.8 (0.3 – 1.5)
			≤1.0	1.3 (0.4 – 1.8)	1.5 (0.4 – 2.0)
		М	≤1.5	1.2 (0.4 – 1.5)	1.3 (0.4 – 1.8)
	Zugfestigkeit		≤2.0	1.0 (0.4 – 1.5)	1.2 (0.4 – 1.8)
	≼800MPa		≼1.0	1.0 (0.3 – 1.7)	1.0 (0.3 – 1.7)
		L	≼1.5	0.8 (0.3 – 1.5)	0.8 (0.3 – 1.5)
		_	≤2.0	0.7 (0.3 – 1.2)	0.7 (0.3 – 1.2)

1. Verwenden Sie während der Zerspanung Druckluft, um Späne effektiv auszutragen. Können die Späne nicht effektiv mit Druckluft ausgetragen werden, empfehlen wir die Nassbearbeitung.

3. Reduzieren Sie die Schnittdaten, wenn starke Vibrationen auftreten.

^{2.} Die Werkzeugstandzeit kann bei Nassbearbeitung kürzer sein als bei Trockenbearbeitung. Wenn Sie für Anwendungen, bei denen Trockenbearbeitung empfohlen wird, Nassbearbeitung anwenden, reduzieren Sie die Schnittgeschwindigkeit um 25 %.

^{4.} Reduzieren Sie bei unterbrochenen Schnitten die Schnittgeschwindigkeit und die Vorschubgeschwindigkeit um 20 %.

SCHNITTDATENEMPFEHLUNGEN

VPX200/300

SCHNITTGESCHWINDIGKEIT (TROCKENBEARBEITUNG)

			en						а	e			
	Material	Eigenschaften	T. ung			≤0.25 DC		0.25 -	0.5 DC	0.5 - 0.75 DC		DC (Nut)	
	Material	Eigenschaften	Schnitt- bedingungen	Empfe 1.	hlung 2.	MV1020	MV1030	MV1020	MV1030	MV1020	MV1030	MV1020	MV1030
	Baustahl	≤180HB	• ¢	L	М	280 (220–330)	230 (180–270)	270 (210–320)	220 (170–260)	220 (170–260)	180 (140–210)	220 (170–260)	180 (140–210)
Ρ	C-Stahl	180-280HB	• ¢	L	М	220 (170–260)	180 (140–210)	210 (160–240)	170 (130–200)	170 (130–200)	140 (110–160)	170 (130–200)	170 (130–200)
	Legierter Stahl	280-350HB	• €	L	М	180 (140–210)	180 (140–210)	170 (130–200)	170 (130–200)	140 (110–160)	140 (110–160)	140 (110–160)	140 (110–160)
	Rostfreier Stahl	≤200HB	• ¢	L	М	_	180 (140–210)	_	170 (130–200)	_	140 (110–160)	_	140 (110–160)
М	Rostfreier Stant	>200HB	• •	L	М	_	150 (110–180)	_	140 (100–160)	_	110 (80–130)	_	110 (80–130)
12	Duktiles Gusseisen	Zugfestigkeit <450MPa	• €	М	L	200 (150–280)	150 (100–200)	190 (140–270)	140 (90–190)	170 (130–240)	125 (80–170)	170 (130–240)	100 (80–120)
ĸ	Dukilles Gusselsen	Zugfestigkeit <800MPa	•¢	М	L	180 (140–250)	150 (100–200)	170 (130–240)	140 (90–190)	150 (120–210)	125 (80–170)	150 (120–210)	150 (120–210)

NASSBEARBEITUNG

			en						a	ae								
	Material	Eigenschaften	T ung			€0.25	5 DC	0.25 -	0.5 DC	0.5 - 0.	.75 DC	DC (N	lut)					
	Baustahl C-Stahl	Eigenschaften	Schnitt- bedingungen	Empfe 1.	ehlung 2.	MV1020	MV1030	MV1020	MV1030	MV1020	MV1030	MV1020	MV1030					
	Baustahl	≤180HB	• ¢	L	М	210 (150–290)	140 (100–190)	200 (140–270)	130 (90–180)	150 (110–180)	100 (70–120)	150 (110–180)	100 (70–120)					
ſ	C-Stahl	180-280HB	• €	L	М	180 (140–210)	120 (90–140)	170 (120–200)	110 (80–130)	150 (110–180)	100 (70–120)	150 (110–180)	100 (70–120)					
	Legierter Stahl	280-350HB	• €	L	М	140 (110–160)	120 (90–140)	130 (90–150)	110 (80–130)	120 (80–140)	100 (70–120)	120 (80–140)	120 (80–140)					
	K Duktiles Gusseisen	Zugfestigkeit ≼450MPa	•¢	М	L	180 (150–240)	130 (80–180)	170 (140–230)	120 (70–170)	150 (130–200)	105 (60–150)	150 (130–200)	105 (60–150)					
ľ	Duktiles Gusseisen	Zugfestigkeit <800MPa	• ¢	М	L	160 (130–210)	130 (80–180)	150 (120–200)	120 (70–170)	130 (110–170)	105 (60–150)	130 (110–170)	105 (60–150)					

SCHNITTDATENEMPFEHLUNGEN

VPX200

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKEN-/NASSBEARBEITUNG

			gen		DC							
Material	Eigenschaften	ae	ngan	9	ð 16 – Ø 18	Q) 20 – Ø 25	Ø	28 – Ø 63			
			Schnitt- bedingungen	ар	fz	ар	fz	ар	fz			
		<0.25DC	• •	≤ 6	0.10-0.15	≤8	0.10-0.20	≤8	0.10-0.2			
Baustahl	-100LID	0.25-0.5DC	• €	≤ 5	0.08-0.12	≤8	0.10-0.15	≤8	0.10-0.20			
Daustant	≤180HB	0.5-0.75DC	• €	≼ 4	0.08-0.12	≤ 6	0.08-0.12	≤ 6	0.10-0.1			
		DC (Nut)	• €	≤ 2	0.06-0.10	≼ 4	0.06-0.10	≼ 4	0.08-0.1			
		<0.25DC	• €	≤ 6	0.10-0.15	≤8	0.10-0.20	≤8	0.10-0.2			
	180-280HB	0.25-0.5DC	• €	≤ 5	0.08-0.12	≤8	0.10-0.15	≤8	0.10-0.2			
C-Stahl Legierter Stahl	10U-ZOUND	0.5-0.75DC	• €	≼ 4	0.08-0.12	≤ 6	0.08-0.12	€ 6	0.10-0.1			
		DC (Nut)	• €	≤ 2	0.06-0.10	≼ 4	0.06-0.10	≼ 4	0.08-0.1			
	280-350HB	<0.25DC	• €	€ 6	0.10-0.15	≤8	0.10-0.15	≤8	0.10-0.2			
		0.25-0.5DC	• €	≤ 5	0.08-0.12	≤8	0.08-0.12	≤8	0.10-0.1			
		0.5-0.75DC	• €	≼ 4	0.08-0.12	≤ 6	0.06-0.10	€ 6	0.08-0.1			
		DC (Nut)	• €	≤ 2	0.06-0.10	≼ 4	0.06-0.10	€ 4	0.06-0.1			
		<0.25DC	• c	≤ 6	0.10-0.15	≤8	0.10-0.20	≤8	0.10-0.2			
Rostfreier Stahl		0.25-0.5DC	• c	≤ 5	0.08-0.12	≤8	0.08-0.15	≤8	0.08-0.1			
RUSTIFEIER Stant	_	0.5-0.75DC	00	≼ 4	0.06-0.10	≤ 6	0.08-0.12	≤6	0.08-0.1			
		DC (Nut)	0 C	≤2	0.06-0.10	≼ 4	0.06-0.10	≼ 4	0.06-0.1			
		<0.25DC	• €	≤ 6	0.10-0.15	≤8	0.10-0.20	≤8	0.10-0.2			
Duktiles Gusseisen	Zugfestigkeit	0.25-0.5DC	• €	≤ 5	0.08-0.12	≤8	0.10-0.15	≤8	0.10-0.1			
Dukilles Gusselsen	<800MPa	0.5-0.75DC	• €	≼ 4	0.08-0.12	≤ 6	0.08-0.12	≤6	0.08-0.1			
		DC (Nut)	• €	≤ 2	0.06-0.10	≼ 4	0.06-0.10	€ 4	0.06-0.1			

- Diese Schnittdaten sind Richtwerte für Ausführungen mit Standardschaft (die Bezeichnung endet auf den Buchstaben "S") und Aufsteckfräser. Bitte passen Sie die Schnittdaten an, wenn Sie bei der Bearbeitung Vibrationen vernehmen, Absplitterungen auftreten o. Ä
- 2. Vibrationen treten wahrscheinlich unter folgenden Bedingungen auf. Führen Sie einen Schnitt und einen Vorschub pro Zahn durch, der mindestens den unten empfohlenen Bedingungen entspricht.
 - Bei hoher Werkzeugauskragung (Verwendung von Ausführungen mit langem Schaft, von Einschraubfräsern usw.)
 - Bei geringer Steifigkeit der Maschine, des Werkstücks oder der Werkstückbefestigung
 - Im Eckenradius beim Rampenfräsen
- 3. Wenn die Schnitttiefe in radialer Richtung (ae) bei 0.5 DC oder mehr liegt, wird eine Ausführung mit weniger Zähnen empfohlen.
- 4. Für bessere Oberflächengüten wird Nassbearbeitung empfohlen. (Die Standzeit ist im Vergleich zur Trockenbearbeitung kürzer)
- 5. Bei Verwendung höherer Schnittdaten als empfohlen, oder über längere Zeiträume hinweg, kann die Spannschraube bei der Bearbeitung ermüden und brechen. Tauschen Sie die Spannschraube bitte in regelmäßigen Abständen gegen eine neue aus.

SCHNITTDATENEMPFEHLUNGEN

VPX300

SCHNITTTIEFE/VORSCHUB PRO ZAHN

TROCKEN-/NASSBEARBEITUNG

			gen	DC					
Material	Eigenschaften	ae	Schnitt- bedingungen		Ø 25		Ø 28 – Ø 80		
			Schr	ар	fz	ар	fz		
		<0.25DC	• €	≤11	0.10 - 0.20	≤11	0.10 - 0.30		
Daustahl	≤180HB	0.25-0.5DC	• €	≤11	0.10 - 0.15	≤11	0.10 - 0.25		
Baustahl C-Stahl	€180HB	0.5-0.75DC	• €	≤8	0.08 - 0.12	≤8	0.10 - 0.20		
		DC (Nut)	• €	≤ 5	0.06 - 0.10	≤ 5	0.08 - 0.15		
		<0.25DC	• €	≤11	0.10 - 0.20	≤11	0.10 - 0.30		
	180-280HB	0.25-0.5DC	• €	≤11	0.10 - 0.15	≤11	0.10 - 0.25		
	10U-20UND	0.5-0.75DC	• €	≤8	0.08 - 0.12	≤8	0.10 - 0.20		
C-Stahl		DC (Nut)	• €	≤ 5	0.06 - 0.10	≤ 5	0.08 - 0.15		
Legierter Stahl	280-350HB	<0.25DC	• €	≤11	0.10 - 0.15	≤11	0.10 - 0.25		
		0.25-0.5DC	• €	≤11	0.08 - 0.12	≤11	0.10 - 0.20		
		0.5-0.75DC	• •	≤ 8	0.06 - 0.10	≤8	0.10 - 0.15		
		DC (Nut)	• €	≤ 5	0.06 - 0.10	≤ 5	0.08 - 0.12		
		<0.25DC	0 C	≤11	0.10 - 0.20	≤11	0.10 - 0.20		
Dootfroign Ctabl		0.25-0.5DC	0 C	≤11	0.08 - 0.15	≤11	0.08 - 0.15		
Rostifeler Stafft	_	0.5-0.75DC	0 C	≤8	0.08 - 0.12	≤8	0.08 - 0.12		
		DC (Nut)	0 C	≤ 5	0.06 - 0.10	≤ 5	0.06 - 0.10		
		<0.25DC	• €	≤11	0.10 - 0.20	≤11	0.10 - 0.25		
Duktiles Gusseisen	Zugfestigkeit	0.25-0.5DC	• €	≤11	0.10 - 0.15	≤11	0.10 - 0.20		
Duktites Gusselsen	<800MPa	0.5-0.75DC	• €	≤8	0.08 - 0.12	≤8	0.10 - 0.15		
		DC (Nut)	● €	≤ 5	0.06 - 0.10	≤ 5	0.08 - 0.12		

- Diese Schnittdaten sind Richtwerte für Ausführungen mit Standardschaft (die Bezeichnung endet auf den Buchstaben "S") und Aufsteckfräser. Bitte passen Sie die Schnittdaten an, wenn Sie bei der Bearbeitung ein Vibrationen vernehmen, Absplitterungen auftreten o. Ä.
- 2. Vibrationen treten wahrscheinlich unter folgenden Bedingungen auf. Führen Sie einen Schnitt und einen Vorschub pro Zahn durch, der mindestens den unten empfohlenen Bedingungen entspricht.
 - Bei hoher Werkzeugauskragung (Verwendung von Ausführungen mit langem Schaft, von Einschraubfräsern usw.)
 - Bei geringer Steifigkeit der Maschine, des Werkstücks oder der Werkstückbefestigung
 - Im Eckenradius beim Rampenfräsen
- 3. Wenn die Schnitttiefe in radialer Richtung (ae) bei 0.5 DC oder mehr liegt, wird eine Ausführung mit weniger Zähnen empfohlen.
- 4. Für bessere Oberflächengüten wird Nassbearbeitung empfohlen. (Die Standzeit ist im Vergleich zur Trockenbearbeitung
- 5. Bei Verwendung höherer Schnittdaten als empfohlen, oder über längere Zeiträume hinweg, kann die Spannschraube bei der Bearbeitung ermüden und brechen. Tauschen Sie die Spannschraube bitte in regelmäßigen Abständen gegen eine neue aus.

SCHNITTDATENEMPFEHLUNGEN

AHX440S

TROCKENBEARBEITUNG

	-	V	'c	_		
Material	Eigenschaften	MV1020	MV1030	fz	ар	ae
Baustahl	<180HB	300 (200 – 400)	245 (190 – 300)	0.3 (0.2 – 0.4)	≼3	≤0.8 DC
C-Stahl	180-280HB	260 (170 – 350)	210 (150 – 270)	0.3 (0.2 – 0.4)	≼3	≤0.8 DC
Legierter Stahl	280-350HB	180 (100 – 250)	135 (90 – 180)	0.3 (0.2 - 0.4)	≼3	<0.8 DC
Rostfreier Stahl	≤200HB	_	185 (120 – 250)	0.2 (0.1 – 0.3)	≼3	≤0.8 DC
Rostireier Stant	>200HB	_	140 (80 – 200)	0.2 (0.1 – 0.3)	≼3	<0.8 DC
Dodaile - Consider	Zugfestigkeit ≼450MPa	240 (130 – 350)	185 (120 – 250)	0.2 (0.1 – 0.3)	≼3	≤0.8 DC
Duktiles Gusseisen	Zugfestigkeit <800MPa	220 (80 – 350)	150 (100 – 200)	0.2 (0.1 – 0.3)	[0.1 – 0.3] ≤3	<0.8 DC

- $1. \ Schnittdaten \ anhand \ der \ obigen \ Tabelle \ passend \ zur \ Anwendung \ einstellen.$
- 2. Für bessere Oberflächengüten wird Nassbearbeitung empfohlen. (Die Werkzeugstandzeit verringert sich dadurch im Vergleich zur Trockenbearbeitung)
- 3. Die empfohlene Schnitttiefe ist von der Geometrie der WSP abhängig.
- 4. Reduzieren Sie bei nicht idealer Werkstückbefestigung oder hoher Werkzeugauskragung die Schnittgeschwindigkeit und den Vorschub um 30 % der empfohlenen Werte.
- 5. Nassbearbeitung empfohlen für eine hohe Oberflächenqualität in rostfreiem Stahl. (Die Werkzeugstandzeit wird durch Kühlmittel reduziert.)

AHX475S

TROCKENBEARBEITUNG

	Matarial	Farmakattan		V	'c			
	Material	Eigenschaften		MV1020	MV1030	fz	ар	ae
			R	220 (170 – 270)	140 (80 – 200)	0.6	≤1.6	<0.5 DC
	Baustahl	≤180HB	R	220 (170 – 270)	140 (80 – 200)	0.8	≤1.6	0.5 DC < ae ≤ 0.8 DC
			М	220 (170 – 270)	140 (80 – 200)	1.0	≤1.6	0.8 DC < ae ≤ DC
			R	200 (150 – 250)	120 (60 – 180)	0.6	≤1.6	<0.5 DC
P		180-280HB	R	200 (150 – 250)	120 (60 – 180)	0.8	≤1.6	0.5 DC < ae ≤ 0.8 DC
	C-Stahl Legierter Stahl		М	200 (150 – 250)	120 (60 – 180)	1.0	≤1.6	0.8 DC < ae ≤ DC
		280-350HB	R	150 (100 – 200)	90 (30 – 150)	0.5	≤1.6	<0.5 DC
			R	150 (100 – 200)	90 (30 – 150)	0.6	≤1.6	0.5 DC < ae ≤ 0.8 DC
			R	150 (100 – 200)	90 (30 – 150)	0.7	≤1.6	0.8 DC < ae < DC
			R	200 (150 – 250)	140 (80 – 200)	0.6	≤1.6	<0.5 DC
		Zugfestigkeit ≤450MPa	R	200 (150 – 250)	140 (80 – 200)	0.8	≤1.6	0.5 DC < ae < 0.8 DC
	K Duktiles Gusseisen	4430MT d	М	200 (150 – 250)	140 (80 – 200)	1.0	≤1.6	0.8 DC < ae < DC
r			R	180 (130 – 230)	140 (80 – 200)	0.5	≤1.6	<0.5 DC
		Zugfestigkeit ≼800MPa	R	180 (130 – 230)	140 (80 – 200)	0.6	≤1.6	0.5 DC < ae < 0.8 DC
_		4000M1 d	R	180 (130 – 230)	140 (80 – 200)	0.7	≤1.6	0.8 DC < ae ≤ DC
								1/1

^{1.} Reduzieren Sie bei nicht idealer Werkstückbefestigung oder hoher Werkzeugauskragung die Schnittgeschwindigkeit und den Vorschub um 30 % der empfohlenen Werte.

SCHNITTDATENEMPFEHLUNGEN

WSF406W

TROCKENBEARBEITUNG

		-	Schnitt-		V	'c	,	
	Material	Eigenschaften	bedingungen	ар	MV1020	MV1030	- fz	ae
				ap ≤ 0.5 mm	300 (250 – 300)	150 (100 – 200)	0.13 (0.08 – 0.20)	<0.8DC
				ap ≤ 2.0 mm	250 (210 – 300)	150 (100 – 200)	0.15 (0.10 - 0.25)	<0.8DC
			•	2.0 mm < ap < 4.0 mm	220 (190 – 260)	140 (80 – 200)	0.13 (0.10 - 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	200 (180 – 230)	110 (60 – 160)	0.10 (0.08 – 0.15)	≤0.8DC
				ap ≤ 0.5 mm	250 (210 – 300)	150 (100 – 200)	0.13 (0.08 – 0.20)	≤0.8DC
	0	Zugfestigkeit		ap ≤ 2.0 mm	220 (190 – 260)	150 (100 – 200)	0.15 (0.10 - 0.25)	≤0.8DC
	Grauguss	≤350MPa		2.0 mm < ap < 4.0 mm	200 (180 – 230)	140 (80 – 200)	0.13 (0.10 - 0.20)	≤0.8DC
				4.0 mm < ap ≤ 7.5 mm	180 (160 – 210)	110 (60 – 160)	0.10 (0.08 – 0.15)	≤0.8DC
				ap < 0.5 mm	220 (190 – 260)	140 (80 – 200)	0.13 (0.08 – 0.20)	≤0.8DC
			*	ap ≤ 2.0 mm	200 (180 – 230)	140 (80 – 200)	0.15 (0.10 - 0.25)	≤0.8DC
			**	2.0 mm < ap < 4.0 mm	180 (160 – 210)	110 (60 – 160)	0.13 (0.10 - 0.20)	≤0.8DC
				4.0 mm < ap ≤ 7.5 mm	150 (100 – 180)	80 (40 – 120)	0.10 (0.08 – 0.15)	≤0.8DC
				ap ≤ 0.5 mm	230 (200 – 250)	110 (60 – 160)	0.13 (0.08 – 0.20)	≤0.8DC
				ap ≤ 2.0 mm	200 (170 – 230)	110 (60 – 160)	0.15 (0.10 - 0.25)	≤0.8DC
			•	2.0 mm < ap < 4.0 mm	180 (150 – 210)	90 (50 – 130)	0.13 (0.10 – 0.20)	≤0.8DC
				4.0 mm < ap ≤ 7.5 mm	160 (130 – 190)	70 (40 – 100)	0.10 (0.08 – 0.15)	≤0.8DC
				ap ≤ 0.5 mm	200 (170 – 230)	110 (60 – 160)	0.13 (0.08 – 0.20)	≤0.8DC
ı,	Duktiles Gusseisen	Zugfestigkeit		ap ≤ 2.0 mm	180 (150 – 210)	110 (60 – 160)	0.15 (0.10 – 0.25)	<0.8DC
r\	Duktites Gusseisen	≤450MPa		2.0 mm < ap ≤ 4.0 mm	160 (130 – 190)	90 (50 – 130)	0.13 (0.10 – 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	140 (110 – 170)	70 (40 – 100)	0.10 (0.08 – 0.15)	<0.8DC
				ap ≤ 0.5 mm	180 (150 – 200)	90 (50 – 130)	0.13 (0.08 – 0.20)	<0.8DC
			*	ap ≤ 2.0 mm	160 (130 – 190)	90 (50 – 130)	0.15 (0.10 - 0.25)	<0.8DC
			**	2.0 mm < ap ≤ 4.0 mm	140 (110 – 170)	70 (40 – 100)	0.13 (0.10 – 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	120 (90 – 150)	60 (30 - 90)	0.10 (0.08 – 0.15)	<0.8DC
				ap ≤ 0.5 mm	230 (200 – 250)	110 (60 – 160)	0.13 (0.08 – 0.20)	<0.8DC
				ap ≤ 2.0 mm	200 (170 – 230)	110 (60 – 160)	0.15 (0.10 – 0.25)	<0.8DC
				2.0 mm < ap ≤ 4.0 mm	180 (150 – 210)	90 (50 – 130)	0.13 (0.10 – 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	160 (130 – 190)	70 (40 – 100)	0.10 (0.08 – 0.15)	<0.8DC
				ap ≤ 0.5 mm	200 (170 – 230)	110 (60 – 160)	0.13 (0.08 – 0.20)	<0.8DC
	Duktiles Gusseisen	Zugfestigkeit		ap ≤ 2.0 mm	180 (150 – 210)	110 (60 – 160)	0.15 (0.10 – 0.25)	<0.8DC
	Dunites Ousselsell	<800MPa	•	2.0 mm < ap ≤ 4.0 mm	160 (130 – 190)	90 (50 – 130)	0.13 (0.10 – 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	140 (110 – 170)	70 (40 – 100)	0.10 (0.08 – 0.15)	<0.8DC
				ap ≤ 0.5 mm	180 (150 – 210)	90 (50 – 130)	0.13 (0.08 – 0.20)	<0.8DC
			*	ap ≤ 2.0 mm	160 (130 – 190)	90 (50 – 130)	0.15 (0.10 – 0.25)	<0.8DC
			**	2.0 mm < ap ≤ 4.0 mm	140 (110 – 170)	70 (40 – 100)	0.13 (0.10 – 0.20)	<0.8DC
				4.0 mm < ap ≤ 7.5 mm	120 (90 – 150)	60 (30 - 90)	0.10 (0.08 – 0.15)	<0.8DC

SCHNITTDATENEMPFEHLUNGEN

ASX445

TROCKEN-/NASSBEARBEITUNG

	- ·	V	Vc					R	
Material	Eigenschaften	MV1020	MV1030	fz	~	fz	~	fz	~
Baustahl	≤180HB	300 (200–400)	275 (200–350)	0.15 (0.1-0.2)	JL	0.2 (0.1-0.3)	JM	0.3 (0.2-0.4)	JH
P C-Stahl	180-350HB	260 (170–350)	235 (170–300)	0.15 (0.1-0.2)	JL	0.2 (0.1-0.3)	JM	0.3 (0.2-0.4)	JH
Legierter Stahl	280-350HB	180 (100–250)	165 (100–230)	0.15 (0.1-0.2)	JL	0.2 (0.1-0.3)	JM	0.3 (0.2-0.4)	JH
M Rostfreier Stahl	_	_	220 (170–270)	0.15 (0.1-0.2)	JL	0.2 (0.1-0.3)	JM	0.3 (0.2-0.4)	JH
K Duktiles Gusseisen	Zugfestigkeit <450MPa	240 (130–350)	190 (130–250)	0.15 (0.1–0.2)	JL	0.2 (0.1–0.3)	JM	0.3 (0.2–0.4)	JH, FT
Duktites Gusselsen	Zugfestigkeit >450MPa	220 (80–350)	110 (80–150)	0.15 (0.1-0.2)	JL	0.2 (0.1–0.3)	JM	0.3 (0.2-0.4)	JH, FT
									1/1

ASX400

TROCKEN-/NASSBEARBEITUNG

Makadal	E'aranda (tan	V					R		
матегіаі	Eigenschalten	MV1020	MV1030	fz	~	fz	~	fz	~
Baustahl	≤180HB	300 (200–400)	275 (200–350)	0.18 (0.08-0.28)	JL	0.20 (0.10-0.30)	JM	0.25 (0.10-0.35)	JH
C-Stahl	180-350HB	260 (170–350)	235 (170–300)	0.15 (0.07-0.23)	JL	0.18 (0.10-0.28)	JM	0.20 (0.10-0.30)	JH
Legierter Stahl	280-350HB	180 (100–250)	165 (100–230)	0.13 (0.06-0.20)	JL	0.15 (0.10-0.25)	JM	0.18 (0.10-0.28)	JH
Rostfreier Stahl	_	_	220 (170–270)	0.15 (0.07-0.23)	JL	0.18 (0.10-0.28)	JM	0.20 (0.10-0.30)	JH
Dulatiles Cossesions	Zugfestigkeit ≼450MPa	240 (130–350)	190 (130–250)	0.18 (0.10-0.28)	JL	0.20 (0.10-0.30)	JM	0.25 (0.10-0.35)	JH, FT
Duktiles Gusselsen	Zugfestigkeit >450MPa	220 (80–350)	110 (80–150)	0.18 (0.10-0.28)	JL	0.20 (0.10-0.30)	JM	0.25 (0.10-0.35)	JH, FT
	C-Stahl Legierter Stahl	Baustahl ≤180HB C-Stahl 180-350HB Legierter Stahl 280-350HB Rostfreier Stahl — Zugfestigkeit ≤450MPa Zugfestigkeit	Material Eigenschaften MV1020 Baustahl ≤180HB 300 (200-400) C-Stahl 180-350HB 260 (170-350) Legierter Stahl 280-350HB 180 (100-250) Rostfreier Stahl — — Zugfestigkeit 240 (130-350) Zugfestigkeit 220 (80-350) Zugfestigkeit 220 (80-350)	Baustahl ≤180HB 300 (200-400) 275 (200-350) C-Stahl 180-350HB 260 (170-350) 235 (170-300) Legierter Stahl 280-350HB 180 (100-250) 165 (100-230) Rostfreier Stahl - - 220 (170-270) Zugfestigkeit 240 (130-350) 190 (130-250) Duktiles Gusseisen Zugfestigkeit 220 (80-350) 110 (80-150)	Material Eigenschaften MV1020 MV1030 fz Baustahl ≤180HB 300 (200-400) 275 (200-350) 0.18 (0.08-0.28) C-Stahl 180-350HB 260 (170-350) 235 (170-300) 0.15 (0.07-0.23) Legierter Stahl 280-350HB 180 (100-250) 165 (100-230) 0.13 (0.06-0.20) Rostfreier Stahl — — 220 (170-270) 0.15 (0.07-0.23) Zugfestigkeit ≤450MPa 240 (130-350) 190 (130-250) 0.18 (0.10-0.28) Zugfestigkeit 220 (80-350) 110 (80-150) 0.18 (0.10-0.28)	Material Eigenschaften MV1020 MV1030 fz Baustahl ≤180HB 300 (200–400) 275 (200–350) 0.18 (0.08–0.28) JL C-Stahl 180–350HB 260 (170–350) 235 (170–300) 0.15 (0.07–0.23) JL Legierter Stahl 280–350HB 180 (100–250) 165 (100–230) 0.13 (0.06–0.20) JL Rostfreier Stahl — — 220 (170–270) 0.15 (0.07–0.23) JL Duktiles Gusseisen Zugfestigkeit ≤450MPa 240 (130–350) 190 (130–250) 0.18 (0.10–0.28) JL Zugfestigkeit 220 (80–350) 110 (80–150) 0.18 (0.10–0.28) JL	Material Eigenschaften MV1020 MV1030 fz fz Baustahl ≤180HB 300 (200-400) 275 (200-350) 0.18 (0.08-0.28) JL 0.20 (0.10-0.30) 0.20 (0.10-0.30) C-Stahl Legierter Stahl 180-350HB 260 (170-350) 235 (170-300) 0.15 (0.07-0.23) JL 0.18 (0.10-0.28) 0.18 (0.10-0.28) Rostfreier Stahl - - 220 (170-270) 0.15 (0.07-0.23) JL 0.18 (0.10-0.28) 0.18 (0.10-0.28) Duktiles Gusseisen Zugfestigkeit ≤450MPa 240 (130-350) 110 (80-150) 0.18 (0.10-0.28) JL 0.20 (0.10-0.30) 0.20 (0.10-0.30)	Material Eigenschaften MV1020 MV1030 fz <	Material Eigenschaften MV1020 MV1030 fz <

MITSUBISHI MATERIALS CORPORATION

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone +49 2159 91890 . Fax +49 2159 918966

Email admin@mmchg.de

U.K.

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312

Email sales@mitsubishicarbide.co.uk

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia Phone + 34 96 1441711 . Fax + 34 96 1443786 Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone + 33 1 69 35 53 53 . Fax + 33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

MMC HARDMETAL POLAND SP. Z 0.0 Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.

Viale Certosa 144 . 20156 Milano

Phone +39 0293 77031 • Fax +39 0293 589093

Email info@mmc-italia.it

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mmc-carbide.com

VERTRIEB DURCH:

B270D Veröffentlicht: 2023.10